US 20180164912A1

a2y Patent Application Publication (o) Pub. No.: US 2018/0164912 Al

a9y United States

Smus

43) Pub. Date: Jun. 14, 2018

(54) SIMULATING MULTI-TOUCH EVENTS ON A
BROWSER SYSTEM

(71) Applicant: GOOGLE LLC, Mountain View, CA
(US)

(72) Inventor: Boris Smus, Seattle, WA (US)

(21) Appl. No.: 15/866,417

(22) Filed: Jan. 9, 2018

Related U.S. Application Data

(63) Continuation of application No. 13/415,619, filed on
Mar. 8, 2012, now Pat. No. 9,891,727.

Publication Classification

(51) Int. CL
GOGF 3/041 (2006.01)
GOGF 17/30 (2006.01)
GOGF 3/0488 (2013.01)

(52) US.CL
CPC ... GOGF 3/041 (2013.01); GOGF 17/30873
(2013.01); GOGF 2203/04808 (2013.01); GO6F

3/0416 (2013.01); GOGF 2203/04104

(2013.01); GOGF 3/0488 (2013.01)

(57) ABSTRACT

The subject technology provides for receiving touch inputs
from a touch-input system. The subject technology gener-
ates script-callbacks from the touch inputs in which each of
the script-callbacks includes properties related to an activity
at a contact point of a touch-sensing surface of the touch-
input system. The subject technology converts the script-
callbacks into compliant touch events that are compliant
with a multi-touch browser standard in which each of the
compliant touch events comprises data related to the activity
at the contact point of the touch-sensing surface of the
touch-input system. The subject technology sends the com-
pliant touch events to an application.

computer system 100

application programming 2
intarface (AP device

web application 11
{8.g. video gama)
[rendering enging 118 ;

l browser display window 129]

S s e novan: mmmm matan mntn maest mseen wteee ass Meee feeae Sere e S e e e

Patent Application Publication Jun. 14, 2018 Sheet 1 of 5 US 2018/0164912 A1

computer system 100

rﬁ" Rl !:'"!'!'b b RS s B e O WS SOUTR RN RRRSR BN Wy ey
f fouch-input system 102 i
| i
i e

i touch-sensing XA -contact points !
f surface 105 {

103
| 2 !
! i 5
| i
| low-levet converter 108 i
L Y i o I
I browser system 110 {
| ”,, i
! application programming 112 l
Qg g
i interface (AP device !
i - |
; bler i
i |
! web application 118 I
f {g.g. video game}]
! ¥ i
t -) N !
; rendering enging 18 |
F3 i i

§ R S i
i browser display window 120 i
| !

Patent Application Publication

Jun. 14, 2018 Sheet 2 of 5

fouch-sensing
surface
203

browser bar

248 ‘g

display <
window 240

browser systam

210y
~

A
4
i
3

Y

US 2018/0164912 A1
computer systam 200
touch-input -
system o
202 mﬁ&ﬂ

205

web application
user interface
218

FIG. 2

Patent Application Publication Jun. 14, 2018 Sheet 3 of 5 US 2018/0164912 A1

| tauch-input system 302 1
!
! "y l
i receive touch-input 24 E
: E—
I gengerate raw touch-signals i
| generats ow-level touch-svents 08 |
T !
| browser systern 310
h. 4 .
generats soript-calibacks e
v
314

generate compliant touch-events

b

Ly

interprat touch-avents on a web application {e.g., video gama} ™

A

render formattad content

Patent Application Publication Jun. 14, 2018 Sheet 4 of 5 US 2018/0164912 A1

480,}
pmem—_——————————_——m e 1
! multi-touch enabler devics 414 [
! !
‘ Y, |
| N raceive a soript-caliback from application | |
| " programming interface (APl devics ! |
!
| |
404
: identify properties of seript-calfback §
!
| |
!] I ;
i genera_te a compliant touch-svent by applying a |
] miglti~touch browser standard ko propertis [
l |
i k.4 !
4

: send compliant fouch-evant o e !
: web application (8.g., vides game) i
i
i |

i ~
§ 410 |
‘ | yes regeiving |
- another script-caliback from !
i AP! device? i
* |
§ |
|
* i !
i wait for input from AP devics - i
l |
l 1
L o e e e o e e o o e o o e o et e e |

Patent Application Publication

500

Jun. 14, 2018 Sheet 5 of 5

US 2018/0164912 A1l

processor main memory mass sforage porttable storage |
davice device medium device
AR Y N i &
k. ¥ L A
< bus 505
F A) B S p
L A4 v
peripheral rput conirol graphics
davice(s} davice(s) subsysiem
240 250 §go
E X
ol -
outbut display
810

US 2018/0164912 Al

SIMULATING MULTI-TOUCH EVENTS ON A
BROWSER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims the benefit of pri-
ority under 35 U.S.C. § 120 as a continuation of U.S. patent
application Ser. No. 13/415,619 entitled “Simulating Multi-
touch Events on a Browser System,” filed on Mar. 8, 2012,
the disclosure of which are hereby incorporated by reference
in their entirety for all purposes.

BACKGROUND

[0002] Mobile devices, such as smart phones and tablets,
usually have a capacitive touch-sensitive screen to capture
interactions made with the user’s fingers. Many desktops are
equipped with multi-touch hardware. For example, most
current Apple Mac™ computers are equipped with a multi-
touch-enabled input device of some sort. Multi-touch refers
to the ability of a touch-sensing surface (e.g., trackpad or
touchscreen) to recognize the presence of two or more points
of contact with the surface.

SUMMARY

[0003] The present technology simulates multi-touch
events on a browser system. In one example, a method
includes the following: receiving low-level touch events
from a touch-input system, wherein a low-level touch event
is data that describes an activity at a contact point of a
touch-sensing surface of the touch-input system; generating
script-callbacks from the low-level touch events, wherein a
script-callback includes properties that describe a contact
point at the touch-sensing surface of the touch-input system,
and wherein the script-callbacks enable the browser system
to communicate with the touch-input system; converting the
script-callbacks into compliant touch events that are com-
pliant with a multi-touch browser standard; and sending the
compliant touch events to a web application.

[0004] The technology encompasses other implementa-
tions configured as set forth above and with other features
and alternatives. This summary is not intended to identify
key features or essential features of the claimed subject
matter, nor is it intended to be used as an aid in determining
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Implementations described herein will be readily
understood by the following detailed description in conjunc-
tion with the accompanying drawings.

[0006] FIG. 1 is a block diagram of a computer system
configured to simulate multi-touch events;

[0007] FIG. 2 is an example of user interface of a web
application running on a browser system of a computer
system,

[0008] FIG. 3 is an overview of a method for simulating
multi-touch events on a browser system;

[0009] FIG. 4 is an overview of a method for the multi-
touch enabler of FIG. 1; and

[0010] FIG. 5 is a block diagram of a general purpose or
special purpose computer system.

Jun. 14, 2018

DETAILED DESCRIPTION

[0011] The technology here addresses the problem of
conventional desktop browsers being unable to handle
multi-touch events. As the mobile web evolves to enable
increasingly sophisticated applications, web developers
need a way to handle multi-touch events. For example,
nearly any fast-paced game requires the player to press
multiple buttons at once, which, in the context of a touch-
screen, implies multi-touch. In mobile development, it is
often easier to start prototyping on a desktop and later tackle
the mobile-specific parts on supported devices.

[0012] Unfortunately, a conventional desktop browser is
not configured to handle multi-touch input. Even though an
operating system of a desktop computer may be equipped to
handle multi-touch input, conventional desktop browsers are
unequipped to handle multi-touch input from a multi-touch
input device. As a result, a web application is unable to
respond to multi-touch events due to conventional desktop
browsers being unable to handle multi-touch events.
[0013] Implementations of the technology enable a devel-
oper to write a multi-touch web application (e.g., video
game) for a browser system on a computer (e.g., desktop
computer or laptop computer). As a result, a mobile com-
puter (e.g., tablet or cell phone) may run the substantially
same multi-touch web application.

Browser Capable of Simulating Multi-Touch Events

[0014] FIG.1 is a block diagram of a computer system 100
configured to simulate multi-touch events. The computer
system 100 includes a browser system 110 and a touch-input
system 102, among other systems. Although the computer
system 100 may include an operating system that is able to
handle multi-touch events, a conventional browser system
running on the computer system 110 would be unable to
handle multi-touch events. Fortunately, the browser system
110 is able to handle multi-touch events, as further described
below.

[0015] The browser system 110 is coupled to a touch-input
system 102. The browser system includes an application
programming interface (API) device 112, a multi-touch
enabler 114, a web application 116, a rendering engine 118,
and a browser display window 120, among other devices.
The touch-input system 102 includes a touch-sensing sur-
face 103 and a low-level converter 106, among other
devices.

[0016] The touch-input system 102 can recognize the
presence of one or more contact points 105 via the touch-
sensing surface 103. The contact points 105 are typically
associated with a finger, a stylus, and/or a pointing device,
among other things. Examples of the touch-input system 102
include a touchscreen, a trackpad, and/or any device that
supports multi-touch input. The touch-sensing surface 103
receives touch input and generates raw touch-signals. The
touch-sensing surface 103 sends raw touch-signals to a
low-level converter 106.

[0017] The low-level converter 106 is software on the
operating system of the computer system 100 that converts
raw touch-signals into low-level touch events that the
browser system 110 can interpret. The low-level converter
106 allows the browser system 110 to communicate directly
with the touch-input system 102. An example of a low-level
converter 106 is the TongSeng TUIO (tangible user interface
objects) tracker for the Mac MagicPad™. TongSeng TUIO

US 2018/0164912 Al

is a software wrapper for the Mac OS™ that generates
low-level touch events that comply with a TUIO (tangible
user interface objects) protocol.

[0018] The low-level converter 106 continually sends
low-level touch events to the API device 112 as fingers touch
and move across the touch-sensing surface. A low-level
touch event provides a snapshot of each touch during a
multi-touch sequence or single-touch sequence, particularly
the touches that are new or have changed for a particular
target. For example, a multi-touch sequence may begin
when a finger first touches the surface. Other fingers may
subsequently touch the surface, and all fingers may move
across the surface. The sequence may end when the last of
these fingers is lifted from the surface. The API device 112
receives touch events during each activity of a touch.
[0019] A low-level touch event is data that describes an
activity at a contact point 105 of the touch-sensing surface
103. Examples of low-level touch events are provided below
in Table 1:

TABLE 1

Examples of low-level touch events generated
by the low-level converter.

touch-start (sent upon an initial contact on the surface)
touch-move (sent when a contact moves on the surface)
touch-end (sent when a contact ends on the surface)

[0020] The API device 112 receives low-level touch
events from the low-level converter 106 and generates
script-callbacks. An example of the API device 112 is a
NPAPI plug-in (Netscape Program Application Program
Interface plug-in). Alternatively, the API device 112 may be
code built into the browser system 110, rather than a plug-in
added to the browser system 110. The script-callbacks can
be JavaScript™ callbacks, or callbacks of another scripting
language that enables dynamic and interactive Web pages.
[0021] Script-callbacks enable the browser system 110 to
communicate with the touch-input system 102. The proper-
ties of a script-callback include details that describe a touch
event (e.g., activity of a contact point at the touch-sensing
surface). Properties include, for example, an identifier of a
contact, a position of a contact, and/or a type of a contact,
among other properties. Examples of properties of a script-
callback are provided below in Table 2:

TABLE 2

Examples of properties of a script-callback generated
by the API device.

identifier (e.g., ID = contact #4)
position (e.g., x position = 125, y position = 200)
type (e.g., start, move, or end)

[0022] A problem here is the properties (e.g., identifier,
position, type, etc.) of a script-callback are in a format that
is incompliant with a multi-touch browser standard. At this
point, a web developer would still have difficulty developing
a web application on the browser system that would reliably
run on a mobile device. Accordingly, the API device 112 is
configured to send the script-callbacks to the multi-touch
enabler 114.

[0023] The multi-touch enabler 114 receives script-call-
backs from the API device 112 and generates compliant

Jun. 14, 2018

touch events that comply with a multi-touch browser stan-
dard, such as the W3C™ (World Wide Web Consortium)
Touch Events standard, which is hereby incorporated by
reference in its entirety. These compliant touch events can
also be JavaScript™ events and JavaScript™ function call
backs, but in a standardized format instead of the format
generated by API device 112. Accordingly, a web applica-
tion can be written that uses these compliant touch events,
and then run within any web browser capable of producing
compliant touch events. For example, a web application
written, tested, and run on the desktop, can be expected to
behave the same when that web application is run on a
mobile device in a mobile browser, because that mobile
browser can also generate compliant touch events for the
web application. Touch events generated by an operating
system like Windows of Mac OS™ can be processed by the
native browser into compliant touch events for the web
application. Similarly, touch events generated by a mobile
operating system, which may be different than those gener-
ated by a desktop operating system, can also be processed by
the mobile web browser to generate compliant touch events.
In some cases, a particular operating system or browser may
generate compliant touch events, removing the need to
process incompliant events into compliant events.

[0024] An example of the multi-touch enabler 114 is a
script library that complies with a scripting language that
enables dynamic and interactive Web pages. For instance,
the multi-touch enabler 114 can be a JavaScript™ library.
Example implementations of the multi-touch enabler 114
include an aftermarket browser plug-in and/or code that is
built into the code of the browser system 110.

[0025] Continuing with FIG. 1, the multi-touch enabler
114 identifies properties of script-callbacks. As described
above, example properties of a script-callback include an
identifier, a position, and/or a type, among other properties.
An identifier uniquely distinguishes each contact point from
other contact points at the touch-sensing surface. A position
describes the location of a contact point at the touch-sensing
surface by using, for example, horizontal and vertical coor-
dinates. A type describes a particular contact as being a start
(e.g., a finger initially touching a track pad), a move (e.g., a
finger moving on a track pad), and/or an end (e.g., a finger
lifting off a track pad).

[0026] The multi-touch enabler 114 generates compliant
touch events by applying a multi-touch browser standard to
the incompliant properties of the script-callbacks. In par-
ticular, the multi-touch enabler 114 may convert an incom-
pliant identifier into a compliant identifier, may convert an
incompliant position into a compliant position, and/or may
convert an incompliant type into a compliant touch type, and
so on. The result is a compliant touch event that includes one
or more of these compliant properties. Examples of prop-
erties of a compliant touch event are provided below in
Table 3:

TABLE 3

Examples of properties of a compliant touch event generated
by the multi-touch enabler.

identifier in a format that complies with W3C ™
position in a format that complies with W3C ™
type in a format that complies with W3C ™

US 2018/0164912 Al

[0027] The multi-touch enabler 114 of FIG. 1 sends com-
pliant touch events to the web application 116. The web
application 116 (e.g., video game) receives compliant touch
events and can then combine the compliant touch events to
perform high-level actions. For example, the web applica-
tion 116 can perform high-level functionality by interpreting
touch events as being a multi-point gesture or a single-point
gesture. Examples of high-level actions of the web applica-
tion 116 are provided below in Table 4:

TABLE 4

Examples of high-level actions of a web application.

zooming out upon interpreting compliant touch events as being two
fingers pinching together

zooming in upon interpreting compliant touch events as being two
finger un-pinching apart

activating a program upon interpreting compliant touch events as
being four fingers swiping

rotating an image upon interpreting compliant touch events as being
two fingers rotating

moving a graphical object upon interpreting compliant touch events
as being one stylus swiping

[0028] The web application 116 can then generate prop-
erly formatted content and send the properly formatted
content to the rendering engine 118. The rendering engine
118 receives the formatted content from the web application
116 and instructs the browser display window 120 to display
the formatted content.

[0029] Accordingly, the compliant touch events enable the
web application 116, and thus the browser display window
120 and the browser system 110, to function reliably. The
technology enables a developer to write a multi-touch web
application (e.g., video game) for a browser system on a
computer (e.g., desktop computer or laptop computer). As a
result, a mobile computer (e.g., tablet or cell phone) may run
the substantially same multi-touch web application.

[0030] FIG. 2 is an example of a user interface 216 of a
web application running on a browser system 210 of a
computer system 210. The computer system 200 includes a
touch-input system 202 coupled to a browser system 210,
among other systems. The browser system 210 can run on a
desktop computer, a laptop computer, or other computer.
[0031] The web application running on the browser sys-
tem 210 of FIG. 2 is equipped to respond reliably to touch
events from the touch-input system 202. As illustrated, the
user interface 216 displays formatted content on the display
window 240 in a reliable manner with respect to the contact
points 205. Accordingly, the web application, interactive via
the display window 240, functions reliably with respect to
the contact points 205 at the touch-sensing surface 203.
[0032] Examples of the web application include a video
game, a web application, or a mobile web application,
among other applications. The web application may be
developed by using various resources, such as HTML (Hy-
pertext Markup Language) files, XML (Extensible Markup
language) files, CSS (Cascading Style Sheet) files, XSL
(eXtensible Stylesheet Language) files, JavaScript™ files,
image files (e.g., JPEG, GIF, PNG, etc.), and/or other
resources.

Method Overviews

[0033] FIG. 3 is an overview of a method 300 for simu-
lating multi-touch events on a browser system 310. In some

Jun. 14, 2018

implementations, the computer system 100 of FIG. 1 may
carry out this method 300 of FIG. 3.

[0034] In an act 304, the touch-input system 302 receives
touch-input. For example, a touch-sensing surface recog-
nizes the presence of one or more contact points.

[0035] Inan act 306, the touch-input system 302 generates
raw touch-signals. For example, a touch-sensing surface
generates raw touch-signals and sends the raw touch-signals
to a low-level converter.

[0036] Inan act 308, the touch-input system 302 generates
low-level touch events. For example, a low-level converter
may generate low-level touch events that comply with a
TUIO (tangible user interface objects) protocol.

[0037] In an act 312, the browser system 310 generates
script-callbacks from the low-level touch events. For
example, a NPAPI (Netscape Program Application Program
Interface) plug-in device may generate callbacks that com-
port with JavaScript™ or another scripting language that
enables a generating of dynamic and interactive Web pages.
[0038] In an act 314, the browser system 314 generates
compliant touch events from the script-callbacks. For
example, a multi-touch enabler may generate compliant
touch events that comply with the Touch Events specifica-
tion of the W3C™ (World Wide Web Consortium). A
multi-touch enabler is also discussed below with reference
to FIG. 4.

[0039] In an act 316, the web application running on the
browser system 314 interprets the touch events. For
example, a video game receives compliant touch events
from the multi-touch enabler of the browser system 310.
[0040] In an act 318, the browser system 310 renders the
formatted content in a reliable manner. For example, the
browser system 310 renders the graphics of a video game in
a reliable manner on a display window of the browser
system 310. The graphics of the video game reliably corre-
late with the activity of the contact points discussed above
with respect to the act 304.

[0041] FIG. 4 is an overview of a method 400 for the
multi-touch enabler 114 of FIG. 1. In an act 402, the
multi-touch enabler 414 receives a script-callback from an
API (application programming interface) device. For
example, the multi-touch enabler 414 may include a
JavaScript™ library that is configured to receive and inter-
pret a JavaScript™ callback.

[0042] Inan act 404, the multi-touch enabler 414 identifies
properties of the script-callback. The properties include
details that describe a particular contact point at the touch-
sensing surface.

[0043] In an act 406, the multi-touch enabler 414 gener-
ates a compliant touch event by applying a multi-touch
browser standard to the incompliant properties of the script-
callback. For example, the multi-touch enabler 414 may
convert the incompliant properties to a compliant touch
event. The compliant touch events can be generated using a
conversion code (e.g., a set of JavaScript™ functions or a
JavaScript™ library) running within the web browser, for
example, as part of the developed web application, a back-
ground page, a web application, or a browser extension. This
conversion code may also be included in the web application
itself, and dynamically enabled as necessary depending on
the platform. Alternatively, the code may be enabled while
developing an application on one platform, such as a desktop
platform, and then disabled before that code is deployed for
another platform, such as a mobile platform. This conver-

US 2018/0164912 Al

sion code can create new compliant JavaScript™ events and
JavaScript™ callbacks based on incompliant JavaScript™
events and callbacks, for example, by changing properties of
the incompliant events into a format that complies with a
multi-touch standard.

[0044] Inan act 408, the multi-touch enabler 414 sends the
compliant touch event to a web application. The web appli-
cation may include an application (e.g., video game) that is
interactive via a display window of the browser system. The
multi-touch enabler 414 enables the web application to
function reliably with respect to the particular contact point
at the touch-sensing surface.

[0045] In a decision operation 410, the multi-touch
enabler 414 determines if another script-callback is being
received from the API device. Script-callbacks are typically
rapidly occurring. For example, the multi-touch enabler 414
may receive as many as hundreds, or even thousands, of
script-callbacks per second. Accordingly, this decision
operation 410 and other acts in this method 400 are rapidly
occurring. This decision operation 410 is primarily where
the multi-touch enabler 414 determines if there is a multi-
touch situation. For example, if a contact at the touch-
sensing surface has not ended before another contact starts,
then the multi-touch enabler 414 is likely in the midst a
multi-touch situation. Accordingly, the multi-touch enabler
414 can handle multi-touch events (e.g., two or more contact
points at once) or a single touch event (e.g., one contact
point at once).

[0046] If the multi-touch enabler 414 is not in the midst of
receiving another script-callback from the API-device (e.g.,
if there is no activity of a contact at the touch-sensing
surface), then the method 400 moves to an act 412 where the
multi-touch enabler 414 waits for input from the API device.
The multi-touch enabler 414 may continue this loop of
waiting and determining if a script-callback is being
received, until the multi-touch enabler 414 receives another
script-callback.

[0047] If the multi-touch enabler 414 determines a script-
callback is being received at decision operation 410, then the
method 400 moves to the act 402 where the multi-touch
enabler 414 receives this script-callback. The method 400
continues until, for example, the computer system deacti-
vates the touch-input device, deactivates the browser sys-
tem, and/or shuts down, among other reasons for discon-
tinuing the method 400.

[0048] Note these methods may include other acts and/or
details that are not discussed in these method overviews.
Other acts and/or details are discussed with reference to
other figures and may be a part of the methods, depending
on the implementation.

Example Computer Implementation

[0049] FIG. 5 is a block diagram of a general purpose or
special purpose computer system 500. The computer system
500 may include, for example, a server, a client computer, a
user device, and/or a user computer, among other things. A
device (e.g., apparatus or machine) is hardware or a com-
bination of hardware and software.

[0050] The computer system 500 preferably includes
without limitation a processor device 510, a main memory
525, and an interconnect bus 505. The processor device 510
may include without limitation a single microprocessor, or
may include a plurality of microprocessors for configuring
the computer system 500 as a multi-processor system. The

Jun. 14, 2018

main memory 525 stores, among other things, instructions
and/or data for execution by the processor device 510. If the
system for generating a synthetic table of contents is par-
tially implemented in software, the main memory 525 stores
the executable code when in operation. The main memory
525 may include banks of DRAM (dynamic random access
memory), as well as cache memory.

[0051] The computer system 500 may further include a
mass storage device 530, peripheral device(s) 540, portable
storage medium device(s) 550, input control device(s) 580,
a graphics subsystem 560, and/or an outputdisplay 570. For
explanatory purposes, all components in the computer sys-
tem 500 are shown in FIG. 5 as being coupled via the bus
505. However, the computer system 500 is not so limited.
Devices of the computer system 500 may be coupled
through one or more data transport means. For example, the
processor device 510 and/or the main memory 525 may be
coupled via a local microprocessor bus. The mass storage
device 530, peripheral device(s) 540, portable storage
medium device(s) 550, and/or graphics subsystem 560 may
be coupled via one or more input/output (I/O) buses. The
mass storage device 540 is preferably a nonvolatile storage
device for storing data and/or instructions for use by the
processor device 510. The mass storage device 530, which
may be implemented, for example, with a magnetic disk
drive or an optical disk drive. In a software implementation,
the mass storage device 530 is preferably configured to load
contents of the mass storage device 530 into the main
memory 525.

[0052] The portable storage medium device 550 operates
in conjunction with a nonvolatile portable storage medium,
such as, for example, a CD ROM (compact disc read only
memory), to input and output data and code to and from the
computer system 500. In some implementations, the soft-
ware for generating a synthetic table of contents may be
stored on a portable storage medium, and may be inputted
into the computer system 500 via the portable storage
medium device 550. The peripheral device(s) 540 may
include any type of computer support device, such as, for
example, an /O (input/output) interface configured to add
additional functionality to the computer system 500. For
example, the peripheral device(s) 540 may include a net-
work interface card for interfacing the computer system 500
with a network 520.

[0053] The input control device(s) 580 provide a portion
of the user interface for a user of the computer system 500.
The input control device(s) 580 may include a keypad and/or
a cursor control device. The keypad may be configured to
input alphanumeric and/or other key information. The cursor
control device may include, for example, a mouse, a track-
ball, a stylus, a touchpad, and/or cursor direction keys. In
order to display textual and graphical information, the
computer system 500 preferably includes the graphics sub-
system 560 and the output display 570. The output display
570 may include a CRT (cathode ray tube) display and/or a
LCD (liquid crystal display). The graphics subsystem 560
receives textual and graphical information, and processes
the information for output to the output display 570.

[0054] Each component of the computer system 500 may
represent a broad category of a computer component of a
general and/or special purpose computer. Components of the
computer system 500 are not limited to the specific imple-
mentations provided here.

US 2018/0164912 Al

[0055] Portions of the present technology may be conve-
niently implemented by using a general purpose computer,
a specialized digital computer and/or a microprocessor pro-
grammed according to the teachings of the present descrip-
tion, as will be apparent to those skilled in the computer art.
Appropriate software coding may readily be prepared by
skilled programmers based on the teachings of the present
disclosure. Some implementations may also be implemented
by the preparation of application-specific integrated circuits
or by interconnecting an appropriate network of component
circuits.

[0056] Some implementations include a computer pro-
gram product. The computer program product may be a
storage medium and/or media having instructions stored
thereon and/or therein which can be used to control, or
cause, a computer to perform any of the processes of the
technology. The storage medium may include without limi-
tation floppy disk, mini disk, optical disc, Blu-ray Disc,
DVD, CD-ROM, micro-drive, magneto-optical disk, ROM,
RAM, EPROM, EEPROM, DRAM, VRAM, flash memory,
flash card, magnetic card, optical card, nanosystems,
molecular memory integrated circuit, RAID, remote data
storage/archive/warehousing, and/or any other type of
device suitable for storing instructions and/or data.

[0057] Stored on any one of the computer-readable storage
medium and/or media, some implementations include soft-
ware for controlling both the hardware of the general and/or
special computer or microprocessor, and for enabling the
computer or microprocessor to interact with a human user or
other mechanism utilizing the results of the technology.
Such software may include without limitation device driv-
ers, operating systems, and user applications. Ultimately,
such computer-readable storage media further includes soft-
ware for performing aspects of the technology, as described
above.

[0058] Included in the programming and/or software of
the general and/or special purpose computer or micropro-
cessor are software modules for implementing the processes
described above. The processes described above may
include without limitation the following: receiving low-level
touch events from a touch-input system, wherein a low-level
touch event is data that describes an activity at a contact
point of a touch-sensing surface of the touch-input system;
generating script-callbacks from the low-level touch events,
wherein a script-callback includes properties that describe a
contact point at the touch-sensing surface of the touch-input
system, and wherein the script-callbacks enable the browser
system to communicate with the touch-input system; con-
verting the script-callbacks into compliant touch events that
are compliant with a multi-touch browser standard; and
sending the compliant touch events to a web application.

CONCLUSION

[0059] A technology is provided for simulating multi-
touch events on a browser system. Advantageously, the
present technology provides a browser system that is con-
figured to function reliably with respect to multi-touch-
input. Accordingly, the technology enables a developer to
write a multi-touch web application (e.g., video game) for a
browser system on a computer (e.g., laptop computer). As a
result, a mobile computer (e.g., tablet or cell phone) may run
the substantially same multi-touch web application.

[0060] In the foregoing specification, the technology has
been described with reference to specific implementations

Jun. 14, 2018

thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the technology. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method to support multi-touch events on a browser
system, the method comprising:

receiving touch inputs from a touch-input system;

generating script-callbacks from the touch inputs, wherein

each of the script-callbacks includes properties related
to an activity at a contact point of a touch-sensing
surface of the touch-input system;

converting the script-callbacks into compliant touch

events that are compliant with a multi-touch browser
standard, wherein each of the compliant touch events
comprises data related to the activity at the contact
point of the touch-sensing surface of the touch-input
system; and

sending the compliant touch events to an application.

2. The method of claim 1, wherein each of the touch
inputs corresponds to a low-level touch event, the low-level
touch event comprising data related to the activity at the
contact point of the touch-sensing surface of the touch-input
system.

3. The method of claim 1, wherein the script-callbacks
enable the browser system to communicate with the touch-
input system, and the script-callbacks are incompliant with
the multi-touch browser standard.

4. The method of claim 1, wherein the properties comprise
a contact identifier, a contact position, and a contact type
related to the activity at the contact point of the touch-
sensing surface of the touch-input system, and the script-
callbacks comprise callbacks of a scripting language.

5. The method of claim 1, wherein the converting further
comprises at least one of converting, using code built into
the browser system, an incompliant position into a compli-
ant position, converting, using the code built into the
browser system, an incompliant touch type into a compliant
touch type, and converting, using the code built into the
browser system, an incompliant identifier into a compliant
identifier.

6. The method of claim 1, wherein the application is
configured to combine the compliant touch events to per-
form high-level actions.

7. The method of claim 1, wherein a multi-touch enabler
is configured to convert the script-callbacks into the com-
pliant touch events, and the application is configured to
receive the compliant touch events from the multi-touch
enabler, and generate properly formatted content for a ren-
dering engine of the browser system.

8. The method of claim 7, wherein the rendering engine
is further configured to receive the formatted content from
the application, and instruct a browser display window to
display the formatted content.

9. The method of claim 1, wherein a script library that
complies with a scripting language is configured to convert
the script-callbacks to the compliant touch events.

10. The method of claim 1, wherein converting the
script-callbacks includes identifying the properties of the
script callbacks and converting the identified properties to a
second format compliant with the multi-touch browser stan-
dard.

US 2018/0164912 Al

11. A browser system that supports multi-touch events, the
browser system comprising:

an application programming interface (API) device con-

figured to receive touch inputs from a touch-input
system and generate script-callbacks from the touch
inputs, wherein each of the script-callbacks includes
properties related to an activity at a contact point of a
touch-sensing surface of the touch-input system; and

a multi-touch enabler configured to convert the script-

callbacks into compliant touch events that are compli-
ant with a multi-touch browser standard and send the
compliant touch events to an application, wherein each
of the compliant touch events comprises data related to
the activity at the contact point of the touch-sensing
surface of the touch-input system.

12. The browser system of claim 11, wherein each of the
touch inputs corresponds to a low-level touch event, the
low-level touch event comprising data related to the activity
at the contact point of the touch-sensing surface of the
touch-input system.

13. The browser system of claim 11, wherein the script-
callbacks enable the browser system to communicate with
the touch-input system, and the script-callbacks are incom-
pliant with the multi-touch browser standard.

14. The browser system of claim 11, wherein the prop-
erties comprise a contact identifier, a contact position, and a
contact type related to the activity at the contact point of the
touch-sensing surface of the touch-input system, and the
script-callbacks comprise callbacks of a scripting language.

15. The browser system of claim 11, wherein to convert
the script-callbacks further comprises at least one of con-
verting, using code built into the browser system, an incom-
pliant position into a compliant position, converting, using
the code built into the browser system, an incompliant touch

Jun. 14, 2018

type into a compliant touch type, and converting, using the
code built into the browser system, an incompliant identifier
into a compliant identifier.

16. The browser system of claim 11, wherein the appli-
cation is configured to combine the compliant touch events
to perform high-level actions.

17. The browser system of claim 11, wherein the appli-
cation is configured to receive the compliant touch events
from the multi-touch enabler, and generate properly format-
ted content for a rendering engine of the browser system.

18. The browser system of claim 17, wherein the render-
ing engine is further configured to:

receive the formatted content from the application; and

instruct a browser display window to display the format-

ted content.

19. The browser system of claim 11, wherein the multi-
touch enabler further comprises a script library that complies
with a scripting language, and the script library is configured
to convert the script-callbacks to the compliant touch events.

20. A non-transitory computer-readable storage media
storing instructions that when executed cause one or more
processors to perform operations comprising:

receiving touch inputs from a touch-input system;

generating script-callbacks from the touch inputs, wherein

each of the script-callbacks includes properties related
to an activity at a contact point of a touch-sensing
surface of the touch-input system;

converting the script-callbacks into compliant touch

events that are compliant with a multi-touch browser
standard, wherein each of the compliant touch events
comprises data related to the activity at the contact
point of the touch-sensing surface of the touch-input
system; and

sending the compliant touch events to an application.

#* #* #* #* #*

